
Specification-driven Moving
Target Defense Synthesis

Md Mazharul Islam, Qi Duan and Ehab Al-Shaer
University of North Carolina Charlotte

Charlotte, North Carolina, USA
{mislam7,qduan,ealshaer}@uncc.edu

Motivation

• Cyber defense techniques are mostly
• Non-adaptive: take a long time to detect and respond against adversary
• Rigid: do not provide agility in mitigating threat proactively.

• Static and predictable behavior of cyber systems from the attackers' view
creates a fundamental design vulnerability.
• Cyber agility enables cyber systems to defend proactively against

sophisticated attacks by
• dynamically changing the system configuration parameters: mutable parameters
• deceive adversaries from reaching their goals
• disrupt the attack plans by forcing them to change their adversarial behaviors
• deterring adversaries through prohibitively increasing the cost for attacks

Problem Definition

• Developing cyber agility such as moving target defense (MTD) techniques that
are provable safe is a highly complex task
• Requires significant time and expertise in implementation and management
• Requires low level configuration changes:

• Dynamically
• Periodically

• Which can break:
• The mission integrity
• The goal of the defense
• Reachability of the network

• Because of
• Misconfiguration
• Conflicts with existing policies

Our Approach
• Our goal is to address this challenge by providing a framework for automating the creation of configuration-

based moving target techniques rapidly and safely.
• We developed MTDSynth: a cyber agility framework allowing MTD developers for creating MTD control

programs using a high-level cyber agility policy language (HAPL)
• MTDSynth ensures the safe orchestrion and deployment of MTD policies by the followings:

• Mutation triggers: time-based or event-based using user-defined network sensors
• MTD mutable parameters: dynamically changed based on the trigger
• Configuration parameters: dependent on the mutable parameters
• Mutation functions constraints: dictates the methodology to compute and optimize the selection of new mutation value
• Mutation attributes: define the mutation scope or domain

• MTDSynth also provides
• A policy refinement engine to synthesize the control program using Software-defined networking (SDN)
• A translator to verify the MTD control programs that satisfy the constraints defined in the agility policy specification.

• MTDSynth provides an open programming environment to develop rapidly and safely sense-making and
decision making MTD actions to enable cyber agility for dynamic cyber defense.

Cyber Agility Policy Ontology for MTDSynth

Mutation
Technique

Mutation
Parameter

Mutation
Function

has-A

has-A

Key Based

Random

is-A

Mutation
Event

Behavioral

Spatial

Temporal

Configuration
Parameter

on

Routes

IP

Mutation
Action

is-A

Asset

has-A

DNSIDSFirewall

is-A

using

has-A

is-Ais-A

is-A

is-A

is-A

is-A

triggers

Fingerprinting

Perform by

Mutation
Constraints

Activity state

Switch

High-level cyber agility policy language (HAPL)
Agility Rule Π ::= N : E → Λ
MTD Name N ::= STRING
Mutation Event E ::= ∆ | α
Time Interval ∆ ::= NUMBER
Sensor Alert α ::= isHostScanning() | isLinkFlooding()

| isBotDetected() | checkUDPICMPPRate()
| getAvailableBandwidth() | checkNewComers()
| checkElephantTCP() | getRouteLength()
| getCriticalLink() | getRouteRisk()
| getFlowStatistics() | getAllFlowRules()
| getFlowRate()

Agility Spec. Λ ::= MUTATE p id OF {attr } USING f
ON g BY m WHILE c

Mutation Param. p ::= ROUTE | IP | STATE
IP Attr. ipattr ::= id .I P → ⟨l ist of IPAddress⟩ | h

Mutation Func. f ::= random(η, η) | key-based
Configuration g ::= r | r, g
Resource r ::= DNS-entry | switch-table | s
Mutation Action m ::= ipMutate | pathMutate | reDirect

| spatalMutation | createShadow | migrateService
Constraint Spec c ::= β | β ; c
Agility Const. β ::= α | γ | δ | δ op v
Mutation Const. γ ::= idt+1 op η | idt+1 op idt

| attrt+1 op η attrt+1 op attrt
Network Func. δ ::= includeSwitch() | excludeSwitch()

| overlap() | canReach() | getAllPaths()
| getShortestPath() | getMinDetectionProb()
| getAttackUncertainity()

Operator op ::= > | < | ≤ | ≥ | = | , | ∩ | ∪
| ∀ | ∃ | + | − | × | /

MTD Policy Examples: Route Mutation

Route Mutation:
isLinkFlooding(l, 0.2) à

MUTATE route R of {R.src à IP1, R.dst à IP2}
USING random(1..N) ON switch-table BY pathMutate
WHILE

(Rt ∩ Rt+1) / Rt ≥ 0.7;
includeSwitch(Rt+1, [s2]) == TRUE;
excludeSwitch Rt+1, [s6]) == TRUE;
getRouteLength(Rt+1) ≤ 5;
getAvailableBandwidth(Rt+1) > getFlowRate(IP1, IP2) × 1.2;
getRouteRisk(Rt+1) ≤ 0.25

MTDSynth API: Route/Path Mutation
Defense Actions Parameters Descriptions

pathMutate()

<src> List of source Host IPs, e.g. <192.168.10.20/32, 192.168.10.75/32, 192.168.55.99/32, …> etc.

<dst>
List of destination Host IPs, e.g. <192.168.10.20/32, 192.168.10.75/32, …> etc.
Note: (src[i], dst[i]) must be the end hosts of a complete path, where src[i] and dst[i] is the
I’th element of each list.

pathProfile

Example:
pathProfile, P = (v,n,B,R)
v = overlap
n = number of links in a path
B = Maximum bandwidth
R = Maximum Risk threshold

overlap

0: No overlap.

percentage: How much overlap is acceptable.

excludeSpecificLinks: Exclude any specific link form the path

includeSpecificLinks: Include any specific link form the path

maxPathLength: User can provide the maximum path length which can be used as new path.

availableBandwith: User can provide the maximum bandwidth of each link in a path.

maxRisk = R, where (1 - (1-p)n) < R
(p: prob that a link is under attack)

For Each link of any path containing n links, the
probability of that link is under attack is p.

pattern

-1: Deactivate path mutation.

0: Immediate mutation (single mutation)

x: Temporal mutation. Mutate path after every x seconds (periodic /continues mutation)

Conditional (as long as): Mutate path after every x seconds until a condition.

MTD Policy Examples: Spatial Mutation

Spatial IP Mutation:
isHostScanning(100, 5) à

MUTATE IP P of {P.IP à [h1, h2 ,…, hm]}
USING random(1..N) ON DNS-entry BY spatialMutation
WHILE

m×(m−1)/N ≤ 0.1 ;
∀i, j ∈ N Pt . hi ≠ Pt+1 . hi

MTDSynth API: Spatial Mutation

MTD Actions Parameters Descriptions

spatialMutation()

<h> List of h mutable host.

N Number of total host in the network.

<unused_range> Unused IP address list. (Also can be provided with start
address and range limit.)

< mi > Mutable address per host = (n-1)*mi

when -1: Deactivate Special IP mutation.

0: One time mutation.

x: Time based mutation. Mutate IP after x seconds.

other-mutation: For future use.

how Uniform Distribution, RandomDistribution: Select mutable
address list for each mutable host from <unused_range>

MTD Policy Examples: IP Mutation

Temporal IP Mutation:
timeInterval = 5s à

MUTATE IP P of {P.IP à [h1, h2 ,…, hn]}
USING random(1..N) ON DNS-entry BY ipMutate
WHILE

∀i, j ∈ (1, N) Pt+1 . hi ≠ Pt+1 . hj;
∀i, j ∈ N Pt . hi ≠ Pt+1 . hi

Defense Actions Parameters Descriptions

ipMutate()

<rIP> List of initial real IPs, e.g. <192.168.10.20/32, 192.168.10.21/32, 192.168.55.99/32,…> etc.

when -1: Deactivate IP mutation.

0: One time mutation.

x: Time based mutation. Mutate IP after x seconds.

other-mutation: For future use.

how specific vIP: User defined virtual IP, e.g. 192.168.60.99

randomFunction(): A function which will provide random vIPs in a specific time window x.

MTDSynth API: IP Mutation

OpenDaylight Controller
OpenDaylight API

Solvers/reasoners

OpenFlow
Protocol

Network

Interface

Specifications MTD Policy

SMT ASP ConfigChecker

ActiveSDN Engine for MTDSynth

MTD Policy Parser

MTD Controller

MTD Policy TranslatorActiveSDN API

MTD Controller Synthesis using MTDSynth

MTD Controller Synthesis Controller

MTD State
Transition
Diagram

ActiveSDN
Controller
Synthesis

Engine

MTD Specs

MTD
Parameters
and Config

Attack Model

Topology
System Config

The task of the MTDSynth Synthesizer and control system is
to generate a sequence of configuration control signals that,
by construction, ensures that the system satisfies the model
requirements for the MTD techniques, given the
• Specifications for MTD techniques (parameters, actions,

and constraints expressed in Linear Temporal Logic (LTL)),
• Environment specifications (attack model, topology and

system configurations),

Case Study: Spatial Mutation

s1

h1

s2

h3

h4h2 h5

rIP vIP list

IPh1 IPh10, IPh11

rIP vIP list

IPh3 IPh6, IPh7

rIP vIP list

IPh4 IPh8, IPh9

Internet

Netwrok

h1à (h3, IPh7), (h4, IPh8)
h3à (h4, IPh9), (h1, IPh11)
h4à (h3, IPh6), (h1, IPh10)

DNS-entry

Flow s1 Internet s2 Flow

IPh1àIPh7 src=IPh1,dst=IPh7;set_dst:IPh3 IPh1àIPh3 src=IPh1,dst=IPh3;set_src:IPh11 IPh11àIPh3

IPh1ßIPh7 src=IPh3,dst=IPh1;set_src:IPh7 IPh1ßIPh3 src=IPh3,dst=IPh11;set_dst:IPh1 IPh11ßIPh3

1 2

3 4

Flow Entry in edge switches

Spatial Mutation: Flow Rules in SDN Switch Tables

Case Study: Deception by MTDSynth

Target

h1
h3

www.xyz.com

h2

h4 h5

Proxy

h31 h32 h33

h34
h35

h36

Ho
ne

yp
ot

s
Sh

ad
ow

 H
os

ts

Shadow Network

h6

h7

Proxy

(src=IPadversary, dst=IPh4) à (src=IPproxy, dst=IPhoneypot)

(src=IPhoneypot, dst=IPproxy) à (src=IPh4, dst=IPadversary)

Deception by MTDSynth Flow rules in the proxy

http://www.xyz.com/

Evaluation: ActiveSDN Overhead in Terms of
Path Length (for RRM)

3 3.5 4 4.5 5 5.5 6 6.5 7

Path Length
2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

Ti
m

e
(s

)

SMT Solve Time
Total ActiveSDN Process Time

• We compare the total processing delay and the SMT solve time for RRM in a network of 200 hosts with a flow of fixed
source and destination, and different required path length.
• The ActiveSDN configuration delay is small (for example, about 0.07s for path length 4, and 0.13 s for length 7),
which means the ActiveSDN overhead is acceptable.

10 15 20 25 30 35 40 45 50

Number of Shadows
0.5

1

1.5

2

2.5

3

3.5

4

Ti
m

e
(s

)

SMT Solve Time
Total ActiveSDN Process Time

Evaluation: ActiveSDN Overhead in Terms of
Number of Shadows

• We compare the total processing delay and the SMT solve time of the shadow host planning
in a network with 12 mutable hosts, with different number of shadow addresses.
• The difference between SMT solve time and total processing delay is small,
which means the configuration delay is small (for example, about 0.24s for 20 shadows).

MYDSynth API
MTD Action

ipMutate

pathMutate

spatialMutation

createShadow

reDirect

migrateService

Sensors Action
isHostScanning(th, t)

isLinkFlooding(l, th)

chekUDPICMPRate(f)

checkElephantTCP(<f>)

getFlowStatistics(f)

checkNewComers(<f>, t)

getCriticalLinks()

getAllFlowRules (s)

findNeighbors(s)

findPortID(l, r)

detectBot(sig)

Constraints
isIncludeSwitch(Rt, <s>)

excludeSwitch(Rt, <s>)

getRouteLength(Rt)

getAvailableBandWidth(Rt)

getFlowRate(s, d)

overlap(Rt, Rt+1)

getRouteRisk(Rt)

canReach(s, d)

checkUniqueIP(<ip>)

checkNonRepeate (<ip1>, <ip2>)

checkSpatialCollision(<ip1>, <ip2>)

getMinDetectionProb(loc)

getAttackUncertainity(loc)

getAllPaths(s, d)

getShortestPath(s, d)

